13047 measured reflections

 $R_{\rm int} = 0.030$

4293 independent reflections

3033 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(3,5-Dimethoxybenzoyl)-4-(2methoxyphenyl)thiosemicarbazide

Ghulam Qadeer,^a Muhammad Hanif,^a Nasim Hasan Rama^a* and Wen-Tong Chen^b

^aDepartment of Chemistry, Quaid-i-Azam Universsty, Islamabad 45320, Pakistan, and ^bCollege of Chemistry and Chemical Engineering, JiangXi Province Key Laboratory of Coordination Chemistry, JingGangShan University, Ji'an, Jiangxi 343009, People's Republic of China

Correspondence e-mail: nasimhrama@vahoo.com

Received 1 May 2007; accepted 25 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.126; data-to-parameter ratio = 18.9.

The title compound, C₁₇H₁₉N₃O₄S, is an important intermediate for the synthesis of biologically active heterocyclic compounds. The thiosemicarbazide group is approximately planar and forms dihedral angles of 33.03 (6) and 45.48 (5)° with the benzene rings. The structure is stabilized by intramolecular N-H···O, N-H···N and C-H···S, and intermolecular N-H···O, N-H···S, C-H···S and C-H...O hydrogen-bond interactions.

Related literature

For general background see: Allen et al. (1987); Shen et al. (1998); Mao et al. (1999); Antholine & Taketa (1982); for literature on a related structure see: Ji et al. (2002).

Experimental

Crystal data $C_{17}H_{19}N_3O_4S$ $M_r = 361.42$ Monoclinic, $P2_1/c$ a = 15.371 (6) Å b = 14.775 (6) Å c = 7.904 (3) Å $\beta = 102.835 \ (6)^{\circ}$

 $V = 1750.2 (12) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^{-1}$ T = 293 (2) K $0.46 \times 0.26 \times 0.20 \text{ mm}$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.904, \ T_{\max} = 0.960$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	227 parameters
$wR(F^2) = 0.127$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
4293 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1 - H1B \cdots O1$	0.86	2.28	2.595 (2)	102
$N1 - H1B \cdot \cdot \cdot N3$	0.86	2.20	2.645 (2)	112
$C1 - H1A \cdot \cdot \cdot S1$	0.93	2.78	3.292 (2)	116
$N2-H2B\cdots O3^{i}$	0.86	2.29	3.088 (2)	155
$N3-H3B\cdots S1^{ii}$	0.86	2.61	3.377 (2)	149
$C4 - H4A \cdot \cdot \cdot S1^{iii}$	0.93	2.77	3.618 (3)	152
$C9-H9A\cdots O4^{iv}$	0.93	2.47	3.386 (2)	170

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{5}{2}$; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) -x, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iv) -x + 1, $y - \frac{1}{2}$, $-z + \frac{5}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2142).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Antholine, W. & Taketa, F. (1982). J. Inorg. Biochem. 16, 145-154.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ji, B. M., Du, C. X., Zhu, Y. & Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252-255. (In Chinese.)
- Mao, C., Sudbeck, E. A., Venkatachalam, T. K. & Uckun, F. M. (1999). Bioorg. Med. Chem. Lett. 9, 1593-1598.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Shen, X., Shi, X., Kang, B., Liu, Y., Tong, Y., Jiang, H. & Chen, K. (1998). Polyhedron, 17, 4049-4058.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o3051 [doi:10.1107/81600536807025548]

1-(3,5-Dimethoxybenzoyl)-4-(2-methoxyphenyl)thiosemicarbazide

G. Qadeer, M. Hanif, N. H. Rama and W.-T. Chen

Comment

Thiosemicarbazide is interesting because of the formation of complexes with biological activities (Shen *et al.*, 1998). Some substituted thiourea derivatives have shown interesting biological effects, including anti-HIV properties (Mao *et al.*, 1999), and thiourea derivatives have also been successfully screened for various biological actions (Antholine & Taketa, 1982). As a ligand with potential S– and N-atom donors, thiosemicarbazide is interesting because of the structural chemistry of its multifunctional coordination modes (N-monodentate, S-monodentate or N,*S*-bidentate). In order to investigate further this kind of ligand, we synthesized the title compound and describe its structure here.

In the molecule (Fig. 1), the bond lengths and angles are in normal ranges (Allen *et al.*, 1987; Ji *et al.*, 2002). Selected bond distances and angles within the thiosemicarbazide group are quoted in Table 1. The thiosemicarbazide group is approximately planar (maximum displacement 0.133 (2) Å for atom N2) and forms dihedral angles of 33.03 (6) and 45.48 (5)° with the benzene rings. The dihedral angle between the benzene rings is 56.29 (6)°. The molecular structure is stabilized by intramolecular N—H···O, N—H···N and C—H···S hydrogen bonds (Table 2). Intermolecular N—H···O, N—H···S, C—H···S, C—H···S, C—H···S, C—H···S, C—H···S, C—H···S, C—H···S, C-H···S, C-H····S, C-H···S, C-H···S}, C-H···S, C-H···S}, C-H···S},

Experimental

The title compound was prepared by the reaction of 3,5-dimethoxy bezohydrazide (3.92 g, 20 mmol) and 2-methoxyphenyl isothiocyanate (3.3 g, 20 mmol). Single crystals suitable for X-ray measurements were obtained by slow evaporation of an ethanol/water solution (60: 40 v/v) at room temperature (yield: 80%; m.p. 435-437 K).

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93–0.96 Å, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C, N)$ or $1.2 U_{eq}(C)$ for methyl groups.

Figures

Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2. A packing diagram of the title compound, viewed down the b axis. Intra- and intermolecular hydrogen bonds are shown as dotted lines.

1-(3,5-Dimethoxybenzoyl)-4-(2-methoxyphenyl)thiosemicarbazide

Crystal data	
C ₁₇ H ₁₉ N ₃ O ₄ S	$F_{000} = 760$
$M_r = 361.42$	$D_{\rm x} = 1.371 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Melting point: 435(2) K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
<i>a</i> = 15.371 (6) Å	Cell parameters from 1520 reflections
<i>b</i> = 14.775 (6) Å	$\theta = 2.7 - 24.9^{\circ}$
c = 7.904 (3) Å	$\mu = 0.21 \text{ mm}^{-1}$
$\beta = 102.835 \ (6)^{\circ}$	T = 293 (2) K
$V = 1750.2 (12) \text{ Å}^3$	Block, colourless
Z = 4	$0.46 \times 0.26 \times 0.20 \text{ mm}$

Data collection

Bruker APEXII diffractometer	4293 independent reflections
Radiation source: rotating-anode generator	3033 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 293(2) K	$\theta_{\text{max}} = 28.7^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -20 \rightarrow 20$
$T_{\min} = 0.904, \ T_{\max} = 0.960$	$k = -19 \rightarrow 19$
13047 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2

Hydrogen site location: inferred from neighbouring sites

Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0179P)^2 + 0.3525P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.127$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.10	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
4293 reflections	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
227 parameters	Extinction correction: SHELXL97, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0132 (17)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.15553 (3)	0.37817 (3)	0.97813 (7)	0.04962 (16)
01	0.11298 (9)	0.03948 (9)	0.8952 (2)	0.0637 (4)
O2	0.34541 (9)	-0.14431 (9)	1.4113 (2)	0.0639 (4)
O3	0.61762 (8)	-0.06156 (8)	1.2608 (2)	0.0558 (4)
O4	0.40068 (9)	0.20133 (9)	1.0677 (2)	0.0607 (4)
N1	0.13745 (9)	0.19931 (9)	1.0337 (2)	0.0487 (4)
H1B	0.1633	0.1526	1.0874	0.058*
N2	0.26333 (9)	0.26783 (9)	1.1842 (2)	0.0487 (4)
H2B	0.2910	0.3156	1.2297	0.058*
N3	0.29958 (9)	0.18262 (9)	1.2322 (2)	0.0470 (4)
H3B	0.2777	0.1484	1.3004	0.056*
C1	-0.01826 (12)	0.24193 (14)	0.9010 (3)	0.0602 (5)
H1A	-0.0109	0.2990	0.9519	0.072*
C2	-0.10062 (14)	0.21636 (17)	0.7993 (4)	0.0757 (7)
H2A	-0.1484	0.2565	0.7820	0.091*
C3	-0.11147 (16)	0.13246 (18)	0.7247 (4)	0.0800 (7)
H3A	-0.1665	0.1163	0.6556	0.096*
C4	-0.04169 (15)	0.07148 (16)	0.7508 (3)	0.0713 (6)
H4A	-0.0498	0.0145	0.6997	0.086*
C5	0.04030 (12)	0.09527 (13)	0.8531 (3)	0.0527 (5)
C6	0.05241 (11)	0.18213 (12)	0.9261 (2)	0.0468 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C7	0.35912 (11)	-0.00066 (11)	1.2957 (2)	0.0458 (4)
H7A	0.3014	0.0118	1.3069	0.055*
C8	0.39811 (11)	-0.08474 (11)	1.3456 (2)	0.0458 (4)
C9	0.48417 (11)	-0.10345 (11)	1.3312 (2)	0.0452 (4)
H9A	0.5097	-0.1595	1.3649	0.054*
C10	0.53229 (10)	-0.03741 (11)	1.2657 (2)	0.0423 (4)
C11	0.49472 (10)	0.04567 (11)	1.2121 (2)	0.0425 (4)
H11A	0.5267	0.0888	1.1654	0.051*
C12	0.40784 (10)	0.06380 (10)	1.2293 (2)	0.0401 (4)
C13	0.18429 (10)	0.27610 (10)	1.0656 (2)	0.0398 (4)
C14	0.37060 (10)	0.15494 (11)	1.1684 (2)	0.0417 (4)
C15	0.10394 (18)	-0.05097 (14)	0.8277 (4)	0.0806 (7)
H15A	0.1593	-0.0827	0.8656	0.121*
H15B	0.0887	-0.0489	0.7032	0.121*
H15C	0.0577	-0.0818	0.8690	0.121*
C16	0.38136 (16)	-0.23039 (14)	1.4676 (3)	0.0704 (6)
H16A	0.3376	-0.2652	1.5088	0.106*
H16B	0.4333	-0.2228	1.5597	0.106*
H16C	0.3975	-0.2614	1.3724	0.106*
C17	0.67315 (12)	0.00578 (14)	1.2084 (3)	0.0586 (5)
H17A	0.7308	-0.0196	1.2098	0.088*
H17B	0.6796	0.0561	1.2869	0.088*
H17C	0.6463	0.0260	1.0932	0.088*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0436 (3)	0.0354 (2)	0.0669 (3)	0.00322 (17)	0.0061 (2)	0.00655 (19)
O1	0.0637 (9)	0.0389 (7)	0.0914 (12)	-0.0079 (6)	0.0234 (8)	-0.0095 (7)
O2	0.0528 (7)	0.0463 (7)	0.0977 (12)	0.0047 (6)	0.0273 (8)	0.0188 (7)
O3	0.0380 (6)	0.0455 (7)	0.0859 (10)	0.0085 (5)	0.0177 (6)	0.0024 (6)
O4	0.0609 (8)	0.0430 (7)	0.0833 (11)	0.0051 (6)	0.0272 (8)	0.0127 (7)
N1	0.0411 (8)	0.0340 (7)	0.0659 (11)	-0.0021 (6)	0.0011 (7)	0.0039 (6)
N2	0.0387 (7)	0.0315 (7)	0.0704 (11)	0.0051 (5)	0.0000 (7)	-0.0020 (6)
N3	0.0408 (7)	0.0357 (7)	0.0642 (10)	0.0085 (6)	0.0108 (7)	0.0078 (6)
C1	0.0420 (9)	0.0507 (11)	0.0848 (16)	-0.0022 (8)	0.0077 (10)	0.0057 (10)
C2	0.0420 (11)	0.0751 (15)	0.103 (2)	-0.0069 (10)	0.0004 (12)	0.0210 (13)
C3	0.0519 (12)	0.0922 (18)	0.0861 (18)	-0.0259 (12)	-0.0058 (12)	0.0148 (14)
C4	0.0697 (14)	0.0672 (14)	0.0735 (16)	-0.0310 (12)	0.0083 (12)	-0.0093 (11)
C5	0.0516 (10)	0.0476 (10)	0.0602 (13)	-0.0125 (8)	0.0154 (9)	-0.0007 (8)
C6	0.0393 (8)	0.0426 (9)	0.0568 (11)	-0.0077 (7)	0.0070 (8)	0.0033 (8)
C7	0.0355 (8)	0.0433 (9)	0.0578 (12)	0.0042 (7)	0.0086 (8)	0.0012 (8)
C8	0.0425 (9)	0.0393 (9)	0.0546 (11)	0.0003 (7)	0.0089 (8)	0.0023 (7)
C9	0.0425 (9)	0.0375 (8)	0.0540 (11)	0.0072 (7)	0.0074 (8)	0.0005 (7)
C10	0.0353 (8)	0.0403 (9)	0.0500 (10)	0.0048 (6)	0.0068 (7)	-0.0047 (7)
C11	0.0378 (8)	0.0382 (8)	0.0509 (11)	0.0002 (6)	0.0085 (7)	-0.0016 (7)
C12	0.0360 (8)	0.0365 (8)	0.0453 (10)	0.0030 (6)	0.0038 (7)	-0.0018 (7)
C13	0.0349 (8)	0.0339 (8)	0.0510 (10)	0.0031 (6)	0.0105 (7)	-0.0031 (7)

C14 C15	0.0361 (8) 0.0966 (17)	0.0359 (8) 0.0411 (11)	0.0499 (10) 0.116 (2)	0.0015 (6) -0.0178 (11)	0.0029 (7) 0.0493 (16)	-0.0013 (7) -0.0168 (12)
C16	0.0807 (15)	0.0460 (11)	0.0895 (18)	0.0042 (10)	0.0297 (13)	0.0168 (11)
C17	0.0419 (9)	0.0575 (11)	0.0784 (15)	0.0035 (8)	0.0177 (10)	0.0062 (10)
Geometric paran	neters (Å, °)					
S1—C13		1.6769 (17)	C4—C5		1.383	(3)
O1—C5		1.369 (2)	C4—H4	A	0.9300)
O1—C15		1.434 (2)	C5—C6		1.403	(3)
O2—C8		1.374 (2)	C7—C1	2	1.385	(2)
O2—C16		1.418 (2)	C7—C8		1.398	(2)
O3—C10		1.3681 (19)	С7—Н7	'A	0.9300)
O3—C17		1.431 (2)	C8—C9	1	1.381	(2)
O4—C14		1.217 (2)	C9—C1	0	1.392	(2)
N1—C13		1.337 (2)	С9—Н9	A	0.9300)
N1—C6		1.415 (2)	C10—C	11	1.382	(2)
N1—H1B		0.8600	C11—C	12	1.398	(2)
N2—C13		1.365 (2)	С11—Н	11A	0.9300)
N2—N3		1.3949 (19)	C12—C	14	1.500	(2)
N2—H2B		0.8600	С15—Н	[15A	0.9600)
N3—C14		1.363 (2)	С15—Н	15B	0.9600)
N3—H3B		0.8600	С15—Н	15C	0.9600)
C1—C6		1.380 (3)	С16—Н	16A	0.9600)
C1—C2		1.393 (3)	С16—Н	16B	0.9600)
C1—H1A		0.9300	С16—Н	16C	0.9600)
C2—C3		1.367 (4)	С17—Н	[17A	0.9600)
C2—H2A		0.9300	С17—Н	17B	0.9600)
C3—C4		1.381 (3)	С17—Н	17C	0.9600)
С3—НЗА		0.9300				
C5—O1—C15		117.66 (17)	C8—C9		119.24	4 (15)
C8—O2—C16		118.15 (15)	C8—C9	—Н9А	120.4	
C10—O3—C17		117.66 (14)	C10—C	9—H9A	120.4	
C13—N1—C6		130.71 (15)	O3—C1	0—C11	124.11	(16)
C13—N1—H1B		114.6	O3—C1	0—С9	114.81	(14)
C6—N1—H1B		114.6	C11—C	10—С9	121.07	7 (15)
C13—N2—N3		120.56 (14)	C10—C	11—C12	118.91	(16)
C13—N2—H2B		119.7	C10—C	11—H11A	120.5	
N3—N2—H2B		119.7	C12—C	11—H11A	120.5	
C14—N3—N2		118.32 (15)	C7—C1	2—C11	120.92	2 (15)
C14—N3—H3B		120.8	C7—C1	2—C14	122.62	2 (15)
N2—N3—H3B		120.8	C11—C	12—C14	116.45	5 (15)
C6—C1—C2		119.7 (2)	N1—C1	3—N2	114.41	(14)
C6—C1—H1A		120.2	N1—C1	3—S1	127.13	3 (13)
C2—C1—H1A		120.2	N2—C1	3—S1	118.45	5 (12)
C3—C2—C1		120.2 (2)	O4—C1	4—N3	121.67	7 (15)
C3—C2—H2A		119.9	O4—C1	4—C12	122.85	5 (16)
C1—C2—H2A		119.9	N3—C1	4—C12	115.48	3 (15)
C2—C3—C4		120.7 (2)	01—C1	5—H15A	109.5	

С2—С3—НЗА	119.6	O1—C15—H15B	109.5
С4—С3—НЗА	119.6	H15A—C15—H15B	109.5
C3—C4—C5	119.9 (2)	O1-C15-H15C	109.5
С3—С4—Н4А	120.1	H15A—C15—H15C	109.5
С5—С4—Н4А	120.1	H15B—C15—H15C	109.5
O1—C5—C4	125.29 (19)	O2-C16-H16A	109.5
O1—C5—C6	115.12 (16)	O2-C16-H16B	109.5
C4—C5—C6	119.57 (19)	H16A—C16—H16B	109.5
C1—C6—C5	119.90 (17)	O2-C16-H16C	109.5
C1—C6—N1	124.34 (17)	H16A—C16—H16C	109.5
C5—C6—N1	115.58 (16)	H16B—C16—H16C	109.5
C12—C7—C8	118.96 (15)	O3—C17—H17A	109.5
С12—С7—Н7А	120.5	O3—C17—H17B	109.5
С8—С7—Н7А	120.5	H17A—C17—H17B	109.5
O2—C8—C9	123.99 (16)	O3—C17—H17C	109.5
O2—C8—C7	115.11 (15)	H17A—C17—H17C	109.5
C9—C8—C7	120.89 (16)	H17B—C17—H17C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1B…O1	0.86	2.28	2.595 (2)	102
N1—H1B…N3	0.86	2.20	2.645 (2)	112
C1—H1A···S1	0.93	2.78	3.292 (2)	116
N2—H2B···O3 ⁱ	0.86	2.29	3.088 (2)	155
N3—H3B…S1 ⁱⁱ	0.86	2.61	3.377 (2)	149
C4—H4A…S1 ⁱⁱⁱ	0.93	2.77	3.618 (3)	152
C9—H9A···O4 ^{iv}	0.93	2.47	3.386 (2)	170

Symmetry codes: (i) -x+1, y+1/2, -z+5/2; (ii) x, -y+1/2, z+1/2; (iii) -x, y-1/2, -z+3/2; (iv) -x+1, y-1/2, -z+5/2.

Fig. 2

